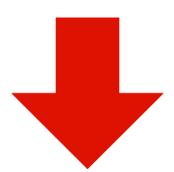
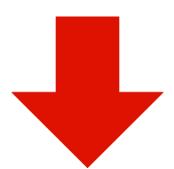

DATA WAREHOUSING: FRONT-END E OPERAZIONI OLAP

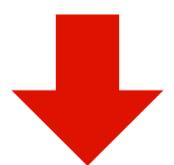
Vedremo


- Gli strumenti per interagire con un Data Warehouse
- Le principali operazioni OLAP
- Le estensioni SQL per operazioni OLAP

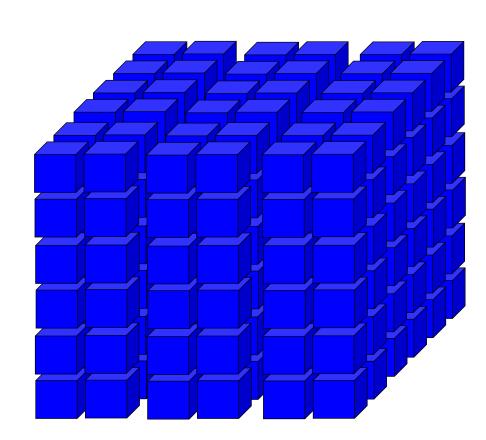
Strumenti per interagire con un Data Warehouse


- Strumenti per la reportistica
- Strumenti OLAP
- Strumenti statistici
- Strumenti di Data Mining

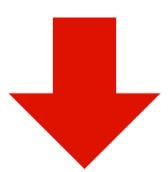
Strumenti OLAP

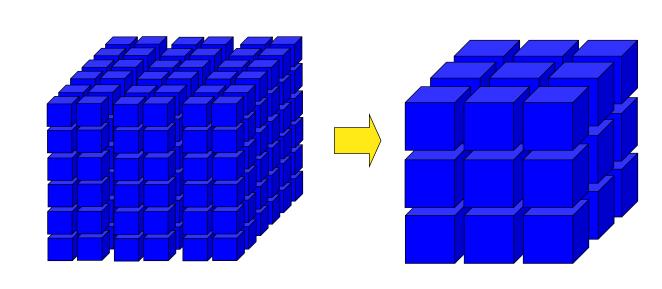

- Utili quando l'uso di report predefiniti non è adeguato.
- Permettono di specificare operazioni OLAP arbitrarie che, in ambienti ROLAP, generano comandi SQL.
- Le operazioni vengono applicate in sequenza in una sessione di lavoro raffinando, passo dopo passo, il risultato ottenuto.
- I fatti vengono analizzati secondo punti di vista e livelli di dettaglio differenti.

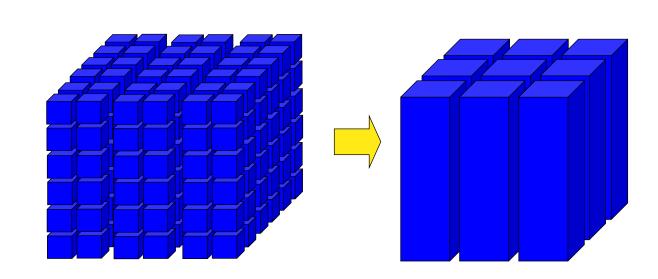
Operazioni OLAP



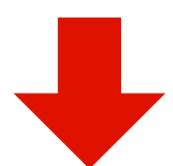
- Calcolo di funzioni di aggregazione rispetto a una o più dimensioni.
- Operazioni di confronto essenziali per comparare l'andamento dei fatti considerati.
- **Presentazione efficace** usando diverse modalità di rappresentazione degli stessi risultati.
- Esplorazione profonda dei dati secondo l'organizzazione gerarchica delle dimensioni.


Operazioni OLAP (segue)

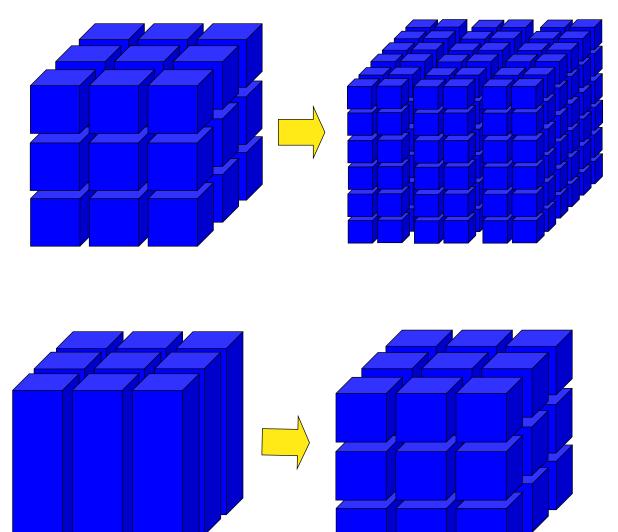

- Roll up
- Drill down
- Slice and dice
- Pivoting
- Sorting
- Drill across



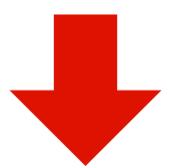
Roll up



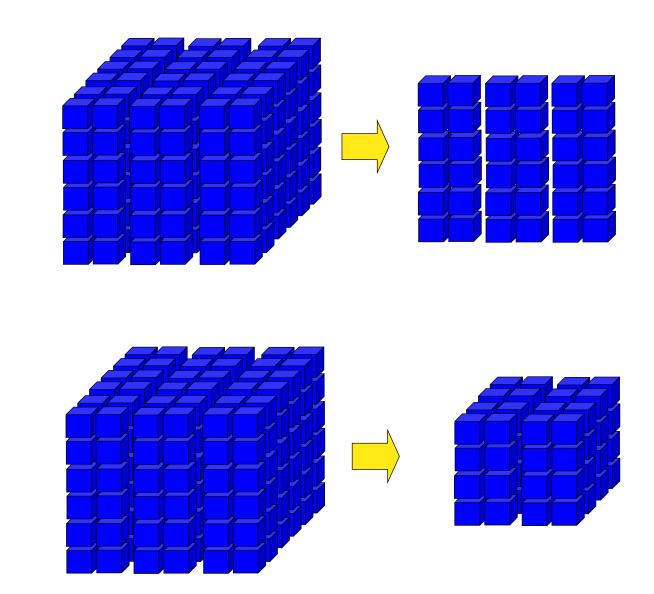
- Permette di ridurre il livello di aggregazione dei fatti mediante:
 - la riduzione del livello di dettaglio di una o più dimensioni, navigando le gerarchie
 - group by (store, month) → group by (city, month)
 - l'eliminazione di una dimensione
 - group by (product, city) → group by (product)
- Si riduce il numero di aggregati da calcolare e aumenta l'insieme dei fatti su cui calcolare ciascun aggregato.



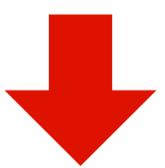
Drill down:


Permette di aumentare il livello di aggregazione dei fatti mediante:

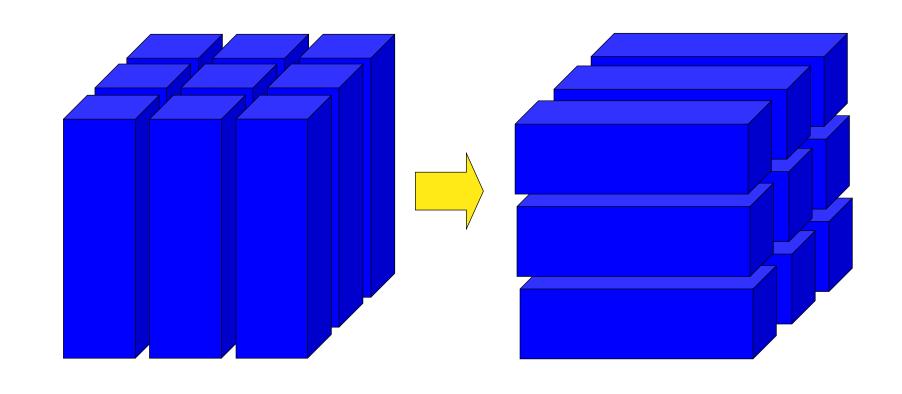
- l'incremento del livello di dettaglio di una o più dimensioni navigando le gerarchie
 - group by (city, month) → group by (store, month)
- l'aggiunta di una nuova dimensione
 - group by (city) →
 group by (city, product)



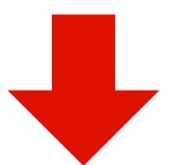
 Aumenta il numero di aggregati da calcolare e si riduce l'insieme dei fatti su cui calcolare ciascun aggregato.


Slide and dice

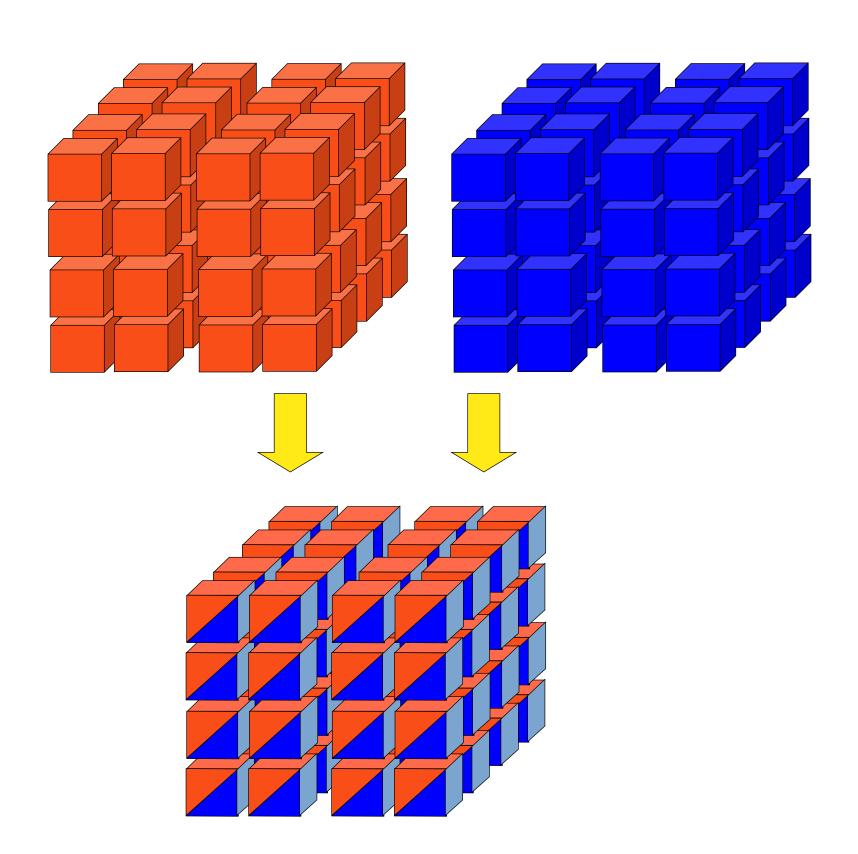
- Permette di ridurre il volume dei fatti da analizzare selezionandone un sottoinsieme.
 - slice: singolo predicato
 - vendite del 2021
 - dice: combinazione di predicati
 - vendite del 2021 a Genova.



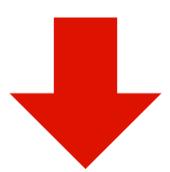
Pivoting


• Riorganizzazione/rotazione della struttura multidimensionale.

• L'insieme dei fatti e il livello di dettaglio a cui sono rappresentati non cambiano.

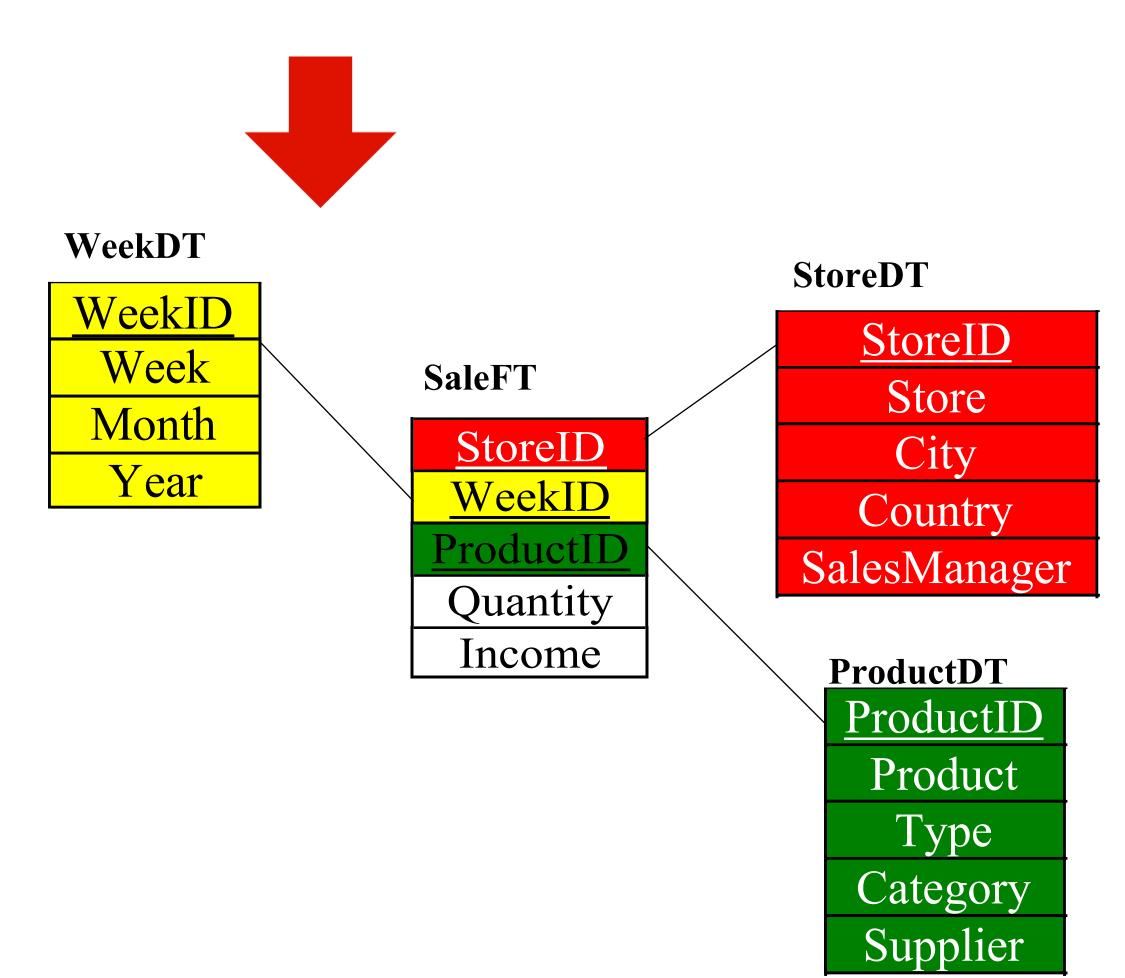


• Impatto solo sulla visualizzazione.


Drill across

• Permette di combinare il contenuto di due Data Mart.

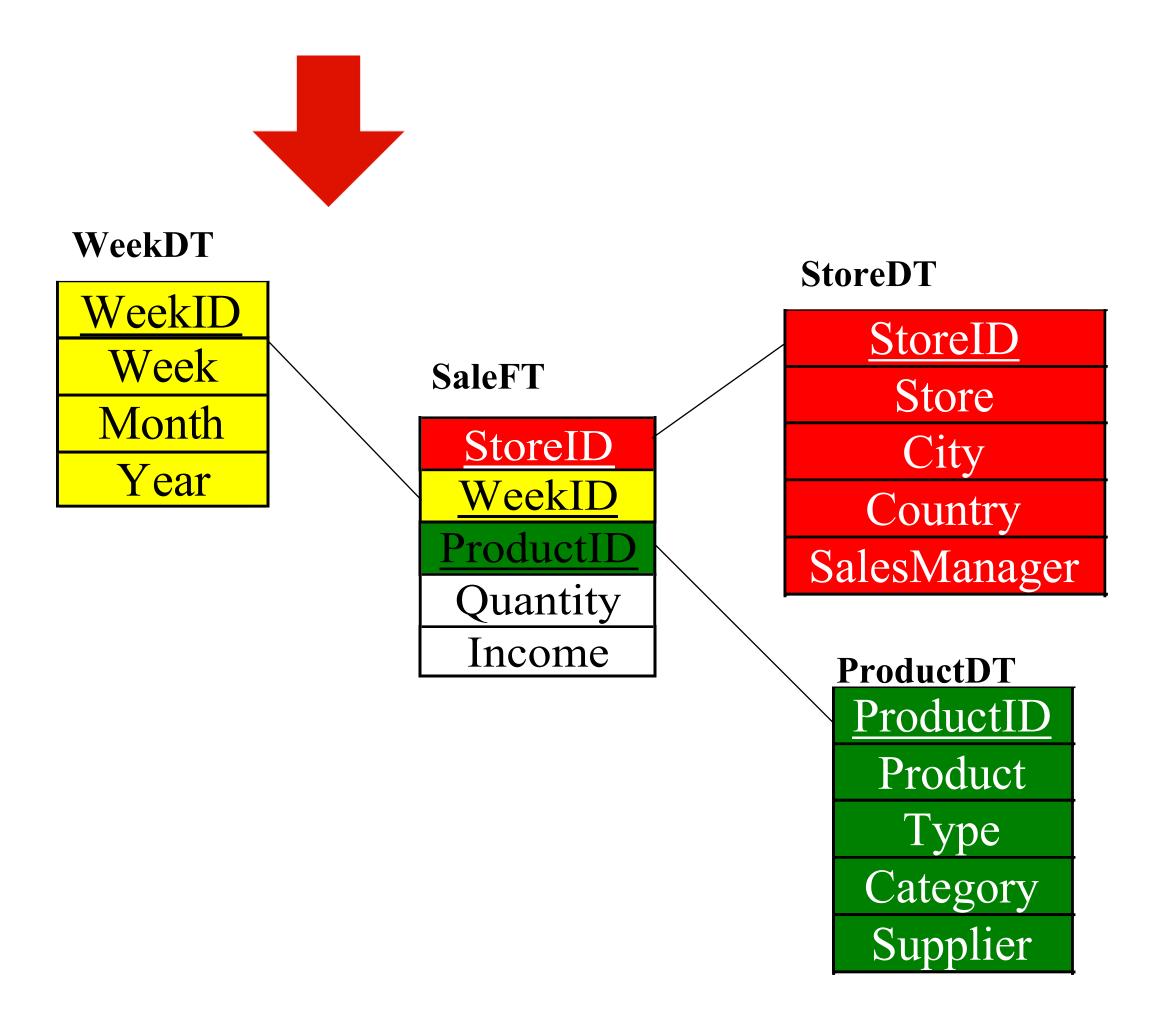
Estensioni OLAP di SQL


- Lo standard SQL è stato esteso con operatori OLAP:
 - Nuovi operatori di raggruppamento
 - Nuovi operatori di aggregazione

Nuovi operatori di raggruppamento

- **GROUP BY**: permette di definire gruppi di righe che condividono gli stessi valori per una lista di colonne.
- Operatori OLAP di raggruppamento:
 - Permettono di definire gruppi di righe rispetto a più di una lista di colonne
 - Corrispondono all'esecuzione simultanea di molteplici clausole GROUP BY
 - Sono implementati efficientemente: i risultati aggregati ottenuti per una certa lista di attributi vengono riutilizzati per calcolare aggregati più generali.
- Tre operatori:
 - GROUP BY ROLLUP per calcolare aggregati rispetto ai valori di insiemi specifici di colonne ottenute rimuovendo una colonna alla volta da un insieme specificato
 - GROUP BY CUBE per calcolare aggregati rispetto a tutte le combinazioni di un insieme di colonne specificato
 - GROUP BY GROUPING SETS per calcolare aggregati rispetto a una lista specificata di insiemi di colonne.

GROUP BY ROLLUP

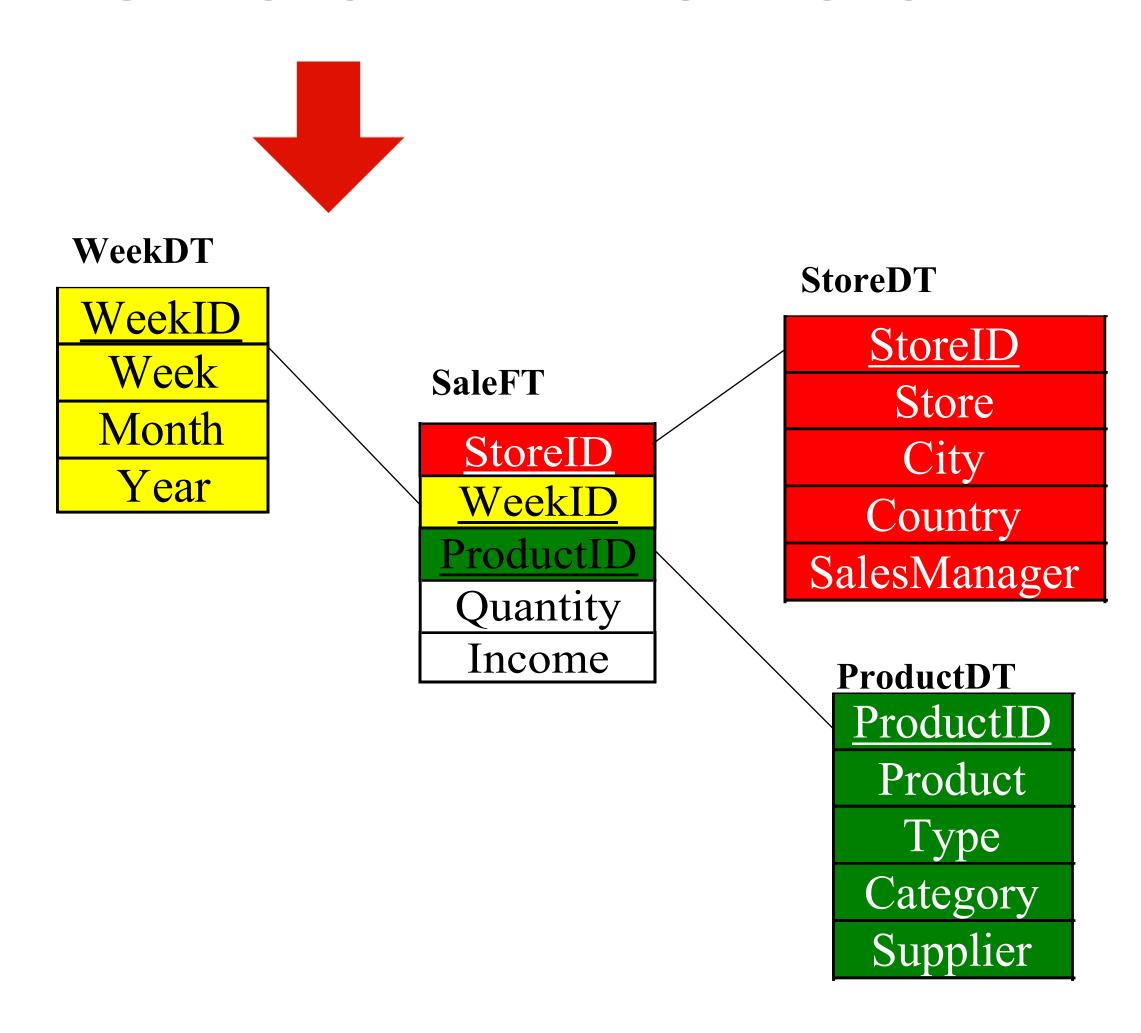

Calcolare il totale delle vendite nell'anno 2000, per la seguente combinazione di attributi:

- City, Month, ProductID
- City, Month
- City
- () [totale generale]

SELECT City, Month, ProductID,
 SUM(Income) AS TotIncome
FROM WeekDT NATURAL JOIN StoreDT NATURAL
 JOIN ProductDT NATURAL JOIN SaleFT
WHERE Year = 2000
GROUP BY ROLLUP (City, Month, ProductID)

City	Month	ProductID	TotIncome
Milano	7	145	110
Milano	7	150	10
Milano			
Milano	7	NULL	8500
Milano	8		
Milano	NULL	NULL	150000
Torino			150
Torino		NULL	2500
Torino	NULL	NULL	135000
NULL	NULL	NULL	25005000

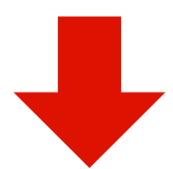
GROUP BY CUBE



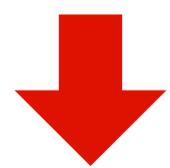
Calcolare il totale delle vendite nell'anno 2000, per tutte le combinazioni dei seguenti attributi:

City, Month, ProductID

SELECT City, Month, ProductID,
 SUM(Income) AS TotIncome
FROM WeekDT NATURAL JOIN StoreDT NATURAL
 JOIN ProductDT NATURAL JOIN SaleFT
WHERE Year = 2000
GROUP BY CUBE (City, Month, ProductID)


GROUP BY GROUPING SETS

Calcolare il totale delle vendite nell'anno 2000, per le seguenti combinazioni di attributi


- Month
- City, Month, ProductID

Nuovi meccanismi di aggregazione

- Sono caratterizzati da:
 - Finestre (WINDOW) di calcolo: specificano, in modo flessibile, l'insieme delle righe sulle quali calcolare una certa funzione aggregata.
 - Basate su tre concetti principali: partizionamento, ordinamento,
 framing.
 - Nuove funzioni di aggregazione.

Partizionamento

- Divide le righe di una tabella in gruppi.
- Differenza con GROUP BY: le righe di ciascun gruppo non vengono collassate in un'unica riga del risultato.
- Su ogni partizione si può calcolare una funzione di aggregazione.
- Nell'output, il risultato dell'aggregazione su una partizione viene associato a ciascuna riga della partizione.

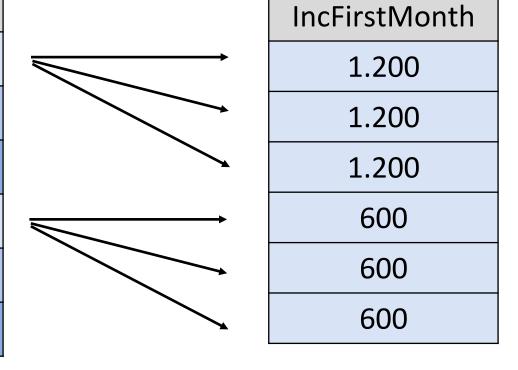
City	Month	Income		
Genova	Feb-2022	1.200	SUM	
Genova	March-2022	2.100	30101	TotIncome
Genova	April-2022	1.200		4.500
Torino	Feb-2022	600]	2.700
Torino	March-2022	1.500		2.700
Torino	April-2022	600		

SELECT SUM(Income) AS TotIncome FROM SaleFT GROUP BY City

City	Month	Income	SUM	TotIncome
Genova	Feb-2022	1.200		4.500
Genova	March-2022	2.100		4.500
Genova	April-2022	1.200		4.500
Torino	Feb-2022	600		2.700
Torino	March-2022	1.500	-	2.700
Torino	April-2022	600		2.700


SELECT SUM(Income) OVER (PARTITION BY City) AS TotIncome FROM SaleFT

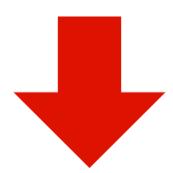
Ordinamento


- Le righe all'interno di una partizione possono essere ordinate.
- Utile per utilizzare particolari funzioni di aggregazione OLAP che richiedono l'ordinamento delle righe in input.
- Due insiemi di funzioni:
 - Funzioni che generano un solo valore aggregato, uguale per tutte le righe della partizione.
 - Funzioni che generano valori aggregati diversi per ciascuna riga della partizione.

Ordinamento (segue)

- Funzioni che:
 - generano un solo valore aggregato calcolato, uguale per tutte le righe della partizione
 - dipendono dall'ordinamento delle righe nelle partizioni
- FIRST_VALUE(), LAST_VALUE(), ...

City	Month	Income
Genova	Feb-2022	1.200
Genova	March-2022	2.100
Genova	April-2022	1.200
Torino	Feb-2022	600
Torino	March-2022	1.500
Torino	April-2022	600



SELECT FIRST_VALUE(Income) OVER
(PARTITION BY City ORDER BY Month)

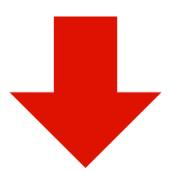
AS IncFirstMonth

FROM SaleFT

Ordinamento (segue)

- Funzioni che:
 - generano valori aggregati diversi per ciascuna riga della partizione
 - dipendono dall'ordinamento delle righe nelle partizioni

ROW_NUMBER(), RANK(),
 RANK_DENSE()


City	Month	
Genova	Feb-2022	
Torino	Feb-2022	
Genova	March-2022	
Torino	March-2022	
Genova	April-2022	
Torino	April-2022	

RN	R	RD
1	1	1
2	1	1
3	3	2
4	3	2
5	5	3
6	5	3

SELECT ROW_NUMBER() OVER (ORDER BY Month) AS RN, RANK() OVER (ORDER BY Month) AS R, RANK DENSE() OVER (ORDER BY Month) AS RD

FROM Table

Framing

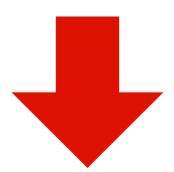
- Permette di associare a ciascuna riga di una partizione un valore aggregato calcolato su un sottoinsieme delle righe della partizione.
- Frame = finestra mobile (sliding window) all'interno di una partizione.
- Varie modalità per specificare i frame.
- Utile per il calcolo di aggregati mobili.

City	Month	Income		
				IncomeToDate
Genova	Feb-2022	1.200]]] ———	1.200
				3.300
Genova	March-2022	2.100] -	4.500
				600
Genova	April-2022	1.200		2.100
				2.700
Torino	Feb-2022	600		2.700
Torino	March-2022	1.500		
Torino	April-2022	600		

SELECT SUM(Income) OVER

(PARTITION BY City

ORDER BY Month


ROWS BETWEEN UNBOUNDED

PRECEDING AND CURRENT ROW)

AS IncomeToDate

FROM SaleFT

Clausola di definizione di window

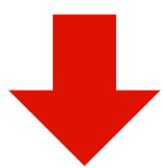
- In SQL è anche possibile attribuire un nome alla definizione delle window
- Ordine di elaborazione delle clausole:
 - FROM, WHERE, GROUP BY, e HAVING
 - SELECT (WINDOW incluse)
 - ORDER BY

```
SELECT A1,..., WFunction(expr)

OVER ([WPartitioning] [WOrdering [Wframe]])

FROM R1,...,Rm

WHERE CondW


GROUP BY B1,...,Bk

HAVING CondH

ORDER BY C1,...,Cz
```

```
SELECT A1,..., An, WFunction(expr) OVER WName
FROM R1,..., Rm
WHERE CondW
GROUP BY B1,..., Bk
HAVING CondH
WINDOW WName AS([WPartitioning ] [WOrdering [Wframe]])
ORDER BY C1,..., Cz
```

Riepilogo e conclusioni finali

Abbiamo visto:

- Gli strumenti per interagire con un Data Warehouse
- Le principali operazioni OLAP
- Le estensioni SQL per operazioni OLAP